文章编号: 0258-7025(2010)09-2376-04

近衍射极限腔内光参量振荡 2.7 µm 激光器

彭跃峰 魏星斌 王卫民 李德明

(中国工程物理研究院应用电子学研究所,四川 绵阳 621900)

摘要 通过 1064 nm 激光抽运 KTP 晶体内腔光参量振荡(OPO)技术获得了近衍射极限的 2.68 µm 激光输出,对 实验结果开展了详细的分析。抽运源为声光调 Q Nd:YAG 激光器,光参量振荡器谐振腔采用双谐振结构,将两块 相同的 KTP 晶体光轴相向放置以补偿走离效应,KTP 晶体按 $\varphi=0^{\circ}, \theta=62^{\circ}$ 切割以获得波长 2.7 µm 激光输出,采 用 II 类相位匹配(o→o+e)以利用较大的非线性系数。在 808 nm 激光二极管抽运功率为 330 W,声光 Q 开关工作 频率为 7 kHz 的条件下,获得平均功率 7.6 W,波长 2.68 µm 激光输出,光束质量因子 M° 小于 1.6,对应信号光 1.765 µm激光输出功率约 14 W。

关键词 激光器;2.7 μm 激光器;KTP 晶体;光参量振荡
 中图分类号 TN248.1 文献标识码 A doi: 10.3788/CJL20103709.2376

Intracavity Optical Parametric Oscillator 2.7 μ m Laser with Near Diffraction Limit Beam Quality

Peng Yuefeng Wei Xingbin Wang Weimin Li Deming

(Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China)

Abstract Near diffraction limit 2.68 μ m laser is obtained by intracavity KTP optical parametric oscillation (OPO) pumped by a 1064 nm laser. The experimental results are analyzed in detail. The pump source is an acousto-optical Q-switched Nd: YAG laser, and the OPO is doubly resonated. Two identical KTP crystals are placed with opposite optical axis to compensate the walk-off effect. The crystals are cut as $\varphi = 0^{\circ}$, $\theta = 62^{\circ}$ to generate 2.7 μ m laser. To utilize the large effective nonlinear coefficient, the phase-matching is based on type II ($o \rightarrow o + e$). When the pump power of the 808 nm laser diode is 330 W with a repetition rate of 7 kHz, an average output power of 7.6 W at 2.68 μ m is obtained. The output power of the corresponding signal laser of 1.765 μ m is about 14 W and the beam quality factor M^2 of 2.68 μ m laser is less than 1.6.

Key words lasers; 2.7 µm laser; KTP crystal; optical parametric oscillation

1 引

言

中红外 2.7 μ m 波段激光在军事对抗、光谱分析和环境监测等众多方面有着广泛的应用前景^[1,2]。基于光参量振荡(OPO)技术的可调谐中红外固体激光器由于其具有波长调谐范围宽、转换效率高、结构紧凑、重量轻、维护简单等特点,逐渐成为研究热点^[1~8]。彭跃峰等^[8]采用 PPMgLN OPO 技术获得了 2.7 μ m 激光功率 11.8 W 输出,光束质量因子 M^2 小于 6,通过方案优化设计,该小组已经获得了功率约 40 W,波长 2.7 μ m 的激光输出, M^2 小

于 5。相比于 PPMgLN 晶体,KTP 晶体生长技术 更加成熟,化学机械性能稳定、硬度高、抗激光损伤 阈值高、尺寸大,是一种常用的非线性晶体。彭跃峰 等^[9]利用声光(AO)调 Q Nd:YAG 激光器抽运内腔 两块走离补偿的 KTP OPO,在高重复频率7.5 kHz 下,获得了平均功率 46.5 W 的 2.128 μ m 激光输 出, M^2 小于 2.8。KTP 晶体在临界相位匹配时($\theta \neq$ 90°),走离角大、接收角较小,如果采用两块 KTP 晶 体走离补偿内腔 OPO 方式,就容易获得高转换效 率和高光束质量激光输出。接收角小在某种意义上

收稿日期: 2010-01-20; 收到修改稿日期: 2010-04-06

作者简介: 彭跃峰(1978—), 男, 助理研究员, 主要从事激光二极管抽运固体激光器技术方面的研究。

相当于起到腔内限制激光高阶模起振的作用,有利 于获得高光束质量激光输出。采用内腔 KTP OPO 2.7 μm激光技术较外腔 2.7 μm PPMgLN OPO 技 术具有激光器结构更加紧凑、光束质量更易于控制 等优点。

本文采用 1064 nm 激光抽运 KTP 晶体内腔 OPO 技术,在频率 7 kHz 时,获得了平均功率 7.6 W,波长 2.68 μm 的激光输出,光束质量 M² < 1.6,对应信号光 1.765 μm 激光输出功率约 14 W。

2 实验研究

实验方案采用 1064 nm 激光抽运 KTP 晶体内 腔 OPO 技术获得波长 2.7 µm 激光输出,其由激光 二极管侧面抽运的 Nd: YAG 抽运模块, 声光调 Q 开关,补偿透镜,两块相向放置的 KTP 晶体和 3 块 腔镜组成,如图1所示。M1,M2,M3均为平面镜, M₁ 对 1064 nm 反射率大于 99.5%, M₂ 对 1064 nm 透射率大于 97%,对 1.7~1.8 µm 和 2.6~2.8 µm 反射率大于 98%, M₃ 对 1064 nm 反射率大于 99%,对1.7~1.8 µm 和 2.6~2.8 µm 反射率约为 70%。系统采用两块相向放置的 KTP 晶体有效补 偿了走离效应, KTP 采用 [] 类匹配方式, 切割角 θ 为 $62^\circ, \varphi$ 为 0° , 晶体尺寸为 7 mm×7 mm×15 mm, 两个端面均镀 1064 nm, 1.7~1.8 μm 和 2.6~ 2.8 μm激光增透膜。KTP 是光学双轴晶体,在非 线性频率转换中, I 类相位匹配相互作用的非线性 系数非常小,没有实际用途。而采用Ⅱ类相位匹配 (o→o+e),有效非线性系数 d_{eff}较大,可以获得较高 的转换效率。根据 KTP OPOⅡ类相位匹配角度调 谐曲线^[10]可知:获得 2.7 μm 中红外激光输出,θ角 的切割大小有 θ =47.3°和 θ =63.2°两种。考虑到有 效非线性系数、走离角大小和允许接收角等因素,应 该优先选择 $\theta = 63.2^{\circ}$,表 1 列举了两种匹配角度情 况下的光参量参数。实验方案考虑到折射率方程准 确性问题,选择 $\theta = 62^{\circ}$ 。经过计算,KTP 晶体的走 离长度比较小,要获得高效率 2.7 μm 激光输出需 采用两块相同的短 KTP 晶体相对放置,补偿激光 间的走离,采用多块短晶体相向放置补偿走离效应, 有利于获得高效率 2.7 μm 激光输出。在总抽运功 率一定的情况下,晶体棒参数设计,KTP 晶体质量 和参数设计,1064 nm 大模体积谐振腔参数设计和 KTP OPO 激光谐振腔参数设计是获得高效率、高 光束质量2.7 μm激光输出的关键。Nd:YAG 抽运 模块晶体棒直径设计为4 mm, 声光 Q 开关器件工

作在数千赫兹。因为采用 1064 nm 激光抽运 KTP 晶体内腔 OPO 技术获得波长 2.7 μm 激光输出允 许接收角很小,所以实验方案设计为大模体积腔结 构,提高了光束质量,减小了腔内光束的发散角,有 利于提高2.7 μm激光输出转换效率和光束质量。

图 1 内腔 KTP OPO 2.7 µm 激光器示意图

Fig. 1 Schematic of intracavity KTP OPO 2.7 μm laser

表1 KTP 晶体 II 类相位匹配不同角度光

参量参数比较

Table 1 Comparison of the KTP optical parametric parameters based on []-phase-match with different angles

Angle /(°)	$d_{\rm eff}/({\rm pm/V})$	Accepted-angle $/$	Walk-off
		(mrad • cm)	angle / mrad
$\theta = 47.3, \varphi = 0$	-2.39	2.18	47.66
$\theta = 63.2, \varphi = 0$	-2.98	4.15	37.46

3 实验结果与分析

根据图1设计的装置开展了实验研究,在激光 二极管抽运功率约 330 W,频率 7 kHz 时, 2.68 µm 激 光输出功率为 7.6 W,808 nm 转换为 2.7 μm 激光输 出斜率效率为 3.8%, 对应信号光 1.765 µm 激光输出 功率约14W,如图2所示,图中未给出信号光 1.765 µm激光输出功率曲线。从图 2 可以看出, 2.7 μm激光输出没有出现饱和效应,相信随着腔镜 和晶体膜层抗损伤阈值的提高,进一步提高抽运功 率,可以获得更高功率 2.7 µm 激光输出。2.7 µm 激光输出功率采用事先标定好的分光镜和功率计来 测量,输出镜 M_3 对 1064 nm 激光反射率约为 99.5% (事先标定过), 输出激光中基本不含 1064 nm激光,测量所用分光镜对 1.6~1.9 μm 激 光高反(反射率大于 99%),对 2.5~3.1 μm 激光高 透(透射率大于97%),通过测量分光镜反射部分激 光功率和透射部分激光功率,然后根据事先标定好 的分光镜参数计算得出信号光和闲频光输出功率。 对激光器的输出功率稳定性进行了测量,波长 2.7 μm激光平均输出功率 7.6 W 时,连续工作 10 min, 功率稳定性约为±5%。随着中红外膜层损 伤阈值的提高,通过方案优化设计,相信输出功率稳 定性可以进一步提高。2.7 µm 激光转换效率较低 (如果考虑到信号光1.765 µm输出功率,相对于

光

激

中

37 卷

808 nm激光来说, KTP OPO 斜率效率约为10.8%) 的主要原因是 Nd: YAG 增益模块1064 nm 激光转 换效率比较低,例如在采用对 1064 nm 激光反射率 为70%的输出镜代替 KTP OPO 谐振系统,在激光 二极管抽运功率 330 W,工作频率 7 kHz 时, 1064 nm激光输出功率约为50 W,从808 nm 到 1064 nm 激光输出转换效率约为 15%。实验中的 Nd:YAG 增益模块(自行研制)采用激光二极管环 绕 Nd: YAG 晶体棒侧面抽运方式,为了保证增益模 块荧光分布均匀性(优于90%),未对激光二极管输 出光束聚焦,与Nd:YAG 晶体棒耦合效率较低。若 改用激光二极管端面抽运 Nd: YVO4 晶体增益模 块,2.7 µm 激光有望获得更高的转换效率。目前中 红外镀膜技术不成熟,在某种程度上影响了系统优 化设计和实验的有效开展。随着中红外膜层损伤阈 值的提高,可以进一步对实验装置进行优化设计和 进一步提高抽运功率,这样就有望获得更高功率的 中红外 2.7 µm 激光输出。2.7 µm激光输出光谱如 图 3 所示,中心波长为2.68 µm,谱宽约为 4 nm,因 为该光谱图是在测量精度为1 nm 情况下测量的, 所以激光输出谱宽具有一定的误差。可以通过调节 两块 KTP 晶体的角度,获得中红外 2.7 μm 激光波 长调谐输出。采用响应波长为2~10µm的激光脉

图 3 输出激光光谱 Fig. 3 Laser output spectrum

宽探测器测量了 2.7 μm 激光输出脉宽,脉宽约 70 ns,如图 4 所示。

图 4 2.7 µm 激光脉冲波形

Fig. 4 Temporal profile of 2.7 μ m laser pulse

在 2.7 μm 激光输出功率 7.6 W 情况下,使 2.7 μm激光光束通过焦距为 600 mm 的聚焦透镜, 通过测量不同位置的光斑大小,采用光束传输方程 拟合

$$w^2(z) = w_0^2 + \left(rac{M^2\lambda}{\pi w_0}
ight)^2 imes (z-z_0)^2,$$
 (1)

式中 λ 为激光波长, z_o 为光波传输方向上束腰的位置, w_o 为束腰大小;w(z)为位置z处的光斑大小。两 个方向的光束质量分别为 $M_x^2 = 1.59$ 和 $M_y^2 =$ 1.26,如图5所示。图6为2.7 μ m激光近场光斑 分布,输出光斑为椭圆型,其主要原因为KTPOPO 允许接收立体角在水平面和垂直面(KTP晶体光轴 与激光器轴向所在的面)上不一致造成的,在垂直方 向相位匹配较水平方向严格,只有发散角小的低阶 激光模式能实现相位匹配,光束质量较好。同时也 测量了2.7 μ m输出功率较低时的光斑分布,为圆 形分布。随着抽运功率增加,2.7 μ m激光输出光斑 从圆形分布慢慢变为椭圆分布。分析认为在低功率 时,只有发散角小的、功率密度较高的低阶模能实现 非线性效应,因此呈现为圆形光斑,光束质量为近衍 射极限,并且光斑分布对称性较好。

图 5 光斑半径非线性拟合曲线 Fig. 5 Nonlinear fitting curves of spot radius

图 6 2.7 µm 激光光斑近场分布 Fig. 6 Near-field intensity distribution of 2.7 µm laser beam

4 结 论

采用激光二极管侧面抽运的 Nd: YAG 增益模 块为抽运源,设计了一台光束质量近衍射极限的 2.7 μm激光器,KTP 晶体采用 II 类相位匹配,双晶 体走离补偿内腔 OPO 结构,在重复频率 7 kHz 时, 获得了平均功率 7.6 W 的 2.7 μm 激光输出,M² 小 于 1.6。随着中红外波段镀膜技术的提高和系统优 化设计,可以进一步提高输出功率和转换效率。通 过采用激光二极管端面抽运偏振激光输出的晶体材 料(如 Nd: YVO₄)增益模块代替实验中的 Nd: YAG 增益模块,可以获得高效率 1064 nm 激光偏振输 出,从而可以降低腔内功率密度,减小光学元器件膜 层损伤的可能性,为进一步优化设计提供更大的 空间。

参考文献

1 H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten *et al.*. Development of a mid-infrared laser for study of infrared countermeasures techniques [C]. SPIE, 2004, 5615: 27~38

- 2 Maarten van Herpen, Sacco te Lintel Hekkert, Scott E. Bisson *et al.*. The development of a powerful continuous tunable, mid infrared, cw PPLN OPO for gas detection [C]. SPIE, 2002, 4762: 16~21
- 3 Peng Yuefeng, Xie Gang, Wang Weimin *et al.*. High efficiency optical parametric oscillator 2.7 μm laser on PPMgLN pumped by 1064 nm laser[J]. *Chinese J. Lasers*, 2009, **36**(7): 1815~1818 彭跃峰,谢 刚,王卫民等. 1064 nm 激光抽运 PPMgLN 光参量 振荡高效率 2.7 μm 激光器[J]. 中国激光, 2009, **36**(7): 1815~1818
- 4 Dawun Chen, Todd S. Rose. Low noise 10-W OPO generation near 3 μm with MgO doped PPLN[C]. Conference on Lasers & Electro-Optics(CLEO), 2005, 1829~1831
- 5 Ian Elder. High average power thulium fibre laser pumped mid-IR source[C]. SPIE, 2007, 6738: 673804
- 6 Peng Yuefeng, Wang Weimin, Xie Gang et al.. 3. 8 μm midinfrared laser with 11. 2 W output power[J]. Infrared and Laser Engineering, 2008, 37(suppl.): 82~85 彭跃峰,王卫民,谢 刚等. 11. 2 W 中红外 3. 8 μm 激光器[J]. 红外与激光工程, 2008, 37(suppl.): 82~85
- 7 Yuefeng Peng, Weimin Wang, Xingbing Wei *et al.*. High efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN[J]. *Opt. Lett.*, 2009, **34**(19): 2897~2899
- 8 Peng Yuefeng, Xie Gang, Wang Weimin *et al.*. High efficiency periodically poled lithium niobate with MgO optical parametric oscillator 2. 7 μm laser with 11. 8 W output power[J]. *Chinese J. Lasers*, 2009, **36**(9): 2262~2265 彭氏峰,谢 刚,王卫民等. 11. 8 W高效率掺氧化镁的周期极 化镁的周期极
- 化铌酸锂晶体光参量振荡 2.7 μm 激光器[J]. 中国激光, 2009, 36(9): 2262~2265
- 9 Peng Yuefeng, Xie Gang, Wang Weimin *et al.*. Intracavity optical parametric oscillator high-repetition-rate 2 μm laser with 46 W output power[J]. *Chinese J. Lasers*, 2009, **36**(1): 33~36 彭跃峰,谢 刚,王卫民等. 46 W 腔内光参量振荡高重复频率 2 μm激光器[J]. 中国激光, 2009, **36**(1): 33~36
- 10 Xie Gang, Peng Yuefeng, Lu Yanhua *et al.*. High efficiency 23.6 W, 2 μm Laser[J]. *Chinese J. Lasers*, 2007, **34**(11): 1488~1491
 - 谢 刚,彭跃峰,鲁燕华等. 23.6 W 高效率 2 μm 激光器[J]. 中 国激光, 2007, **34**(11): 1488~1491